

Impact of hygienic design on cleaning and sterilization processes

Dr. Sven Fischer, Krones AG

EHEDG World Congress 2022 - Munich, Germany

Overview over the technical system

Aseptic blow moulder filler capper bloc for PET bottles

Aseptic process

HYG/

Components

Every component has to be validated to show the boundary

6

Achievements through hygienic design

Continuous production time:

Intermittent disinfection time:

2.5 h (1.5 h)

168 h

0 h/w

24 h 32 h/w

4.5 h

Hygienic design allows to drastically reduce planned downtimes

Assumptions:

- Three-shift operation 6000h/a
- 50w/a
- The line performance is the restriction for sales
- Speed: 600bpm
- Profit per bottle: 0.03 €
- Low acid product
- Changeovers und unplanned downtimes neglected
- Energy and media costs neglected

- Profit per hour: 1,080 €
- 120 h/w*1,080 €/h = 129.600 €/w

Losses through cleaning and sterilisation downtime with 4.5 h/d + 8*0.5 h/d intermittent disinfection

- = 9,180 €/d
- = 55,080 €/w

Losses through cleaning and sterilisation downtime with 2.5 h/w (actual)

= 2,700 €/w

Cost for poor hygienic design:

- = 55,080 €/w 2,700 €/w = 52,380 €/w
- Poor hygienic design easily accounts for > 50,000 € per week

Standard procedure using foam cleaning

First step: external CIP residence time of foam

no hot surfaces allowed because of foam

Second step: CIP with caustic SIP with hot water

External SIP with peracetic acid sterile water flush

• Using foam cleaning means a sequential procedure is necessary

From large cleanroom to isolator technology

Isolater technology is one enabler for external caustic cleaning

From manual to automatic CIP-cup insertion

• Automatic CIP-cups insertion saves downtime

Standard procedure using caustic cleaning

Parallel treatment of CIP/SIP and external caustic cleaning of isolator surfaces no residence time for caustic Hot isolator surface cleaning External SIP with peracetic acid followed by sterile water flush System needs to withstand heat and caustic treatment

• External caustic cleaning is the enabler for parallel treatment

From foam cleaning to caustic cleaning

• Caustic cleaning is more efficient than foam cleaning

Procedure using a dedicated CIP-unit

CIP media direct from CIP-Unit

no displacement of CIP media from CIP module to sterile tank

System needs to be able to heat up caustic quickly

Shortening preparation time by reducing system size

From existing CIP-plant to dedicated CIP-module

Reducing system size and pipe length saves time and energy

Procedure using H_2O_2 and steam sterilization

SIP with steam

microbiological benefit

Gaseous external SIP with vapourized H_2O_2 Hygienic design for effective external sterilation necessary

Reduced downtime with steam sterilization and gaseous ext. SIP

From grey zone to disinfectant lock

• A closed system reduces air flow and allows for quicker heating

From wet to dry external sterilization

• Dry external sterilization needs freely accessible surfaces

Actual procedure for low acid products

Drying time is largely influenced by hygienic design of surfaces

Slanted and freely accessible areas dry within 5 minutes

Horizontal hydrophobic areas take up to 45 min. to dry (capper handling parts)

Further reductions possible

• Hygienic design determines the speed of drying to a large degree

From decentral to central air management

Central air management allows for filter sterilization

From non-sterilizable to sterilizable filters

Preliminary filtration Air treatment system HEPA filtration Exhaust air

• Removing another weak point in the system

From CIP-cups to SIP-cups

• SIP-cups for backpressure to increase sterilisation temperature

Actual procedure for CSD

 $90 \min = 1.5 h$

For carbonated softdrinks, where no moulds can grow, the procedure may even be reduced. No extra external sterilization necessary, heating the system once with hot caustic is sufficient. These products are sometimes filled

on conventional lines with proper hygiene management.

• With hygienically designed systems, even less effort is necessary

From drives in the cleanroom to bellows

• The capper is the most critical part in the system

Reducing risk in the discharge area

The conveyor belt does not leave and enter the sterile zone anymore

Conclusion

- Hygienic design helps to reduce planned downtimes to a large degree, increasing product safety at the same time
- The system design needs to be adapted to modern cleaning and sterilization regimes
- Still potential to reduce drying time is accessible through hygienic design
- Poor hygienic design accounts to over 50.000 € lost profit per week in the shown example

