

Classical sensors enhanced for fouling detection and cleaning monitoring Digitalisation of process instrumentation

Challenges of fouling monitoring and cleaning validation

Impact

- Fouling can be responsible for 10 20 % of production costs
- Cleaning can take up to 25 % of operational time

Initiatives

- EHEDG Guideline 50 Hygienic Design requirements for CIP Installations (2019)
- GFSI Benchmarking Scopes JI + JII
 Hygienic Design Management System + HD Risk Assessment (2020)
- IFS Food 7 chapter 4.10 Monitoring of cleaning & disinfection (2021)

Previous research approaches and technologies for fouling monitoring

- Monitoring Tank Cleaning
 - Pressure sensors: Alfa Laval
 - Capacitive sensors: GEA, AWH
 - Optical sensors: Fraunhofer IVV
- Monitoring CIP
 - Spectrometer: Diversey
 - Conductivity + TOC: Letzner
 - Pressure difference: Tetra Pak
 - UV-sensor: Löhrke
- Monitoring fouling of heat exchanger in dairy industry
 - Ultrasonic sensor: TU Munich, University Hohenheim
- Fouling prevention of biofilms
 - Ultrasonic system: Hasytec

Customer challenges

Do I have build-up in the process? Does build-up increase over time? Can I optimize cleaning times (CIP)?

Fouling and cleaning-monitoring ...

...with electromagnetic flowmeters

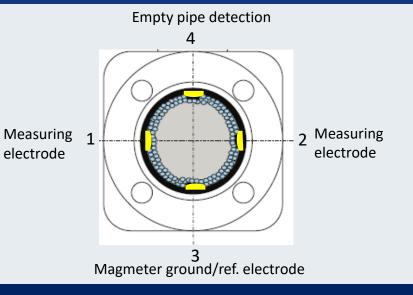


Proline Promag H

Condition monitoring: negative effects on device or process

Process optimization: increase the reliability of the measuring point

The electrical conductivity of a fluid and of a build-up are different.


Through an analysis of the **conductivity distribution** within the measuring tube, build-up can be detected

Build-up = 0 %

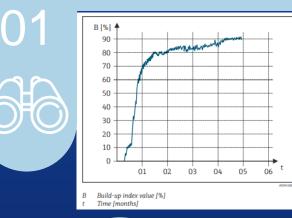
No build-up present

Build-up = 100 %

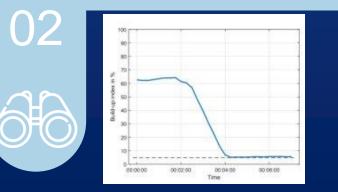
- Value of the maximum measurable build-up thickness
- The present build-up thickness on 100 % varies depending on the process

Build-up & cleaning monitoring in e.g dairy industry

C ENGINEERING C ENGINEERIN C ENGINEERING C ENGINEERING C ENGINEERING C ENGIN


Protein (whey) build-up (Electromagnetic flowmeter)

Device after 75 °C process temperature, 20 h.


3...4 mm build-up

Monitoring protein build-up

"Build-up can be detected and a threshold can be set to trigger a warning"

Monitoring cleaning in place (CIP) status

"After 4 min. no build-up is monitored "

Industry and application example – approved and tested

C ENGINEERIN
C ENGINEERING W J SA HEDG S
Z 4 0 4 0 3 4 0 0 8 9
A B B B B B B B B B B B B B B B B B B B

Industry	Application	Build-up material	Quality of detection
Water	Thermal water circuit (geothermal power plant)	magnetite	very good
Water	Heating circuits	magnetite	very good
Water	Drinking fountain (water supply)	Iron oxide	good / very good
Wastewater	Sludge (WWTP) Industrial sludge	Undefined sludge (incl. fat)	not sufficient
F&B	Raw juice / syrup (sugar)	oxalate (crystal crust)	good
F&B	Dairy products	protein	good / very good

Fouling and cleaning-monitoring ...

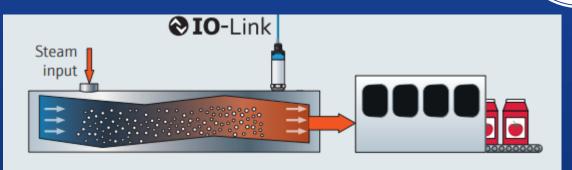
... by combination of conductive and capacitive measurement

Liquitrend QMW43

Combination of conductive & capacitive measurement

Conductive Media: Build-up= relationship between sensor and guard electrode current

Non- conductive Media: Build-up= capacitive signal amplitude of sensor electrode



Tomato sauce: Build up monitoring and cleaning validation

- **Pasteurisation:** Direct steam injection, 100 °C for several min. in holding tube
- **Challenge:** Build up in pipe reduced flow rate and increased process pressure.

> Pasteurisation Process ran the riskof non-conformity according HACCP=> Burned product in final product

- Counteractions: Concentration of cleaning detergent 1 % => 1,5 % => CIP results still insufficient
- **Reason:** No monitoring of build up and no validation of CIP available

Tomato sauce: Build up monitoring and cleaning validation

• Solution

- Installation of Liquitrend QMW43
- Flush mounted in VARINLINE®-housing
- Middle of holding pipe
- Results (process optimisation, CIP optimisation)
 - Frequent starts/stops and changeovers increased build up
 - Process adapted to continuous production

	Before Liquitrend QMW43 Values	With Liquitrend QMW43 Values
CIP cycles/year	50	30
Detergent cost/L	0.06 € (concentration. 1.5%)	0.025 € (concentration 1%)
Volume flow of cleaning	10 m³/hr	20 m ³ /hr
CIP cleaning detergent duration	20 min.	20 min.
Cleaning detergent cost/year	9,000 €	4,500 €

Further application examples

• Brewery Cleaning validation in hot wort pipe before cooler

• Softdrink: Ice Tea Cleaning validation (build-up caused by theine)

Water circulation systems
 Build-up monitoring of biofilms

Things to take into account with Liquitrend QMW43

- Signal accuracy < 0.1 mm
 Very thin build-up will be displayed but starting at 0,1 mm; no details below 0,1 mm
- Biofilm measurement
 - Cannot detect thin oil- or dried biofilm with low DC value
 - Very reliable for usual wet biofilms
- Process connection size: min. ³/₄"
- **Recommended hygienic connection** Real flush mounted pipe assemblies
- Every single application has to be adjusted

Build-up Monitoring

...improve your process insights

Less downtime

Build-up in your process can be monitored and cleaning cycles can be planned accordingly

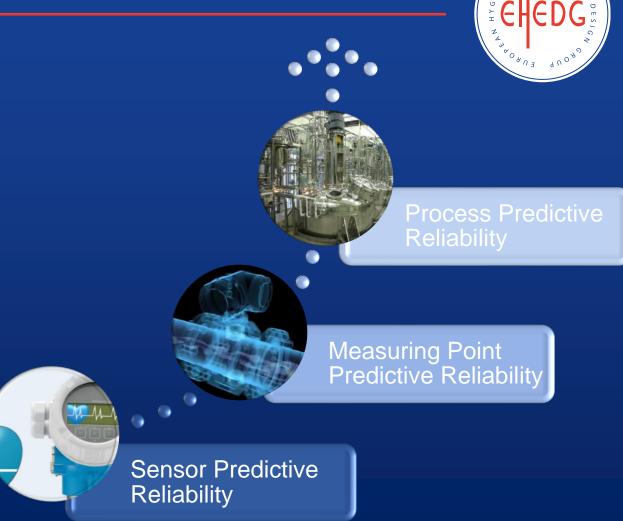
Cleaning time optimization

Build-up monitoring gives confidence in your cleaning efficiency. Potentially saving of cleaning agent and water

Higher reliability

Higher reliability of

measuring values


Confidence

improved process insights

Paul Borggreve / Endress+Hauser

Future prospects: Predictive Reliability enabled with machine learning

- How to capture the information?
 You need digitalisation => connectivity is key
- How to transfer additional information from field to control level? You need digitalisation
- **Target:** To get from the "reactive mode" to the "predictive mode"
- Artificial Intelligence and machine learning will open new chances

Thank you

Paul Borggreve Endress+Hauser Group Services AG Kägenstrasse 2 | 4153 Reinach | Switzerland

<u>Further information</u> Tim Schrodt (tim.schrodt@endress.com) Endress+Hauser (Deutschland) GmbH+Co. KG Colmarer Str. 6 | 79576 Weil am Rhein | Germany

Paul Borggreve / Endress+Hauser

EHEDG World Congress 2022 - Munich, Germany