

Hygienic Design and Application of Sensors

EHEDG Document 37

Presenter Holger Schmidt

EHEDG'S POPOS A GONE ERING OF DESCRIPTION OF DESCR

- Brewer and Malster
- Brewmaster
- Plant and Machine Building
- Automation Companies

- Chairing the WG 37 for more than a decade
- Member of the advisory board from 2015 to 2019 and again since January 2022
- Industry Manager Food and Beverage Mettler Toledo GmbH

My perspective on hygienic design

• 1987: 12I water per I beer

manual operation, mowing hoses, cleaning takes at least as long as the breakfast break, change over by manual testing, concentration control sometimes, in general the more the better

• 2021: 3I water per I beer

fully automated, double seat valves, cleaning along Sinners circle with automated concentration adjustment, all on the spot, saving cleaning time, detergents, energy and water

Vormann Brauerei

Working group

Joseph Albano	Balluff GmbH,	Germany
Michael Bonk	Hans Turck GmbH & Co. KG,	Germany
Thomas Graner	SICK AG,	Germany
Dr. Andreas Höhler	ProMinent GmbH,	Germany
Arne Kleinpeter	Bürkert Werke GmbH & Co. KG,	Germany
Martin Leupold	Baumer Electric AG,	Switzerland

Endress+Hauser GmbH & Co. KG,

Holger Schmidt** Bernd Schumacher Dr. Nikolas Schulte/

Martin Pfändler/

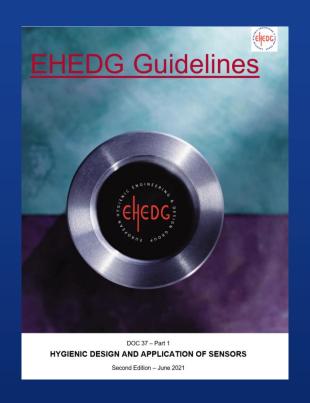
Frederic Schwob

Alexander Schüpbach Dirk Schwamborn Natalie Waldecker Joachim Zipp

Mettler Toledo GmbH, KROHNE Messtechnik GmbH, Knick Elektronische Messgeräte GmbH & Co, Magnetrol GmbH, VEGA Grieshaber KG,

Support and review: Ronald Brand, Carlsberg, Prof. Jens Voigt, Hochschule Trier,

Germany Germany Germany Germany WIKA Alexander Wiegand SE & Co. KG, Germany

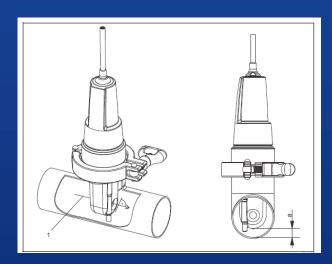

> Switzerland Germany

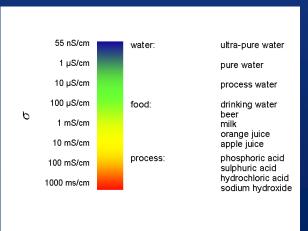
Germany

Switzerland

Document 37 about Sensors

- Decisions required
 - Best possible signal?
 - Best cleanability?
 - What compromise is possible?
- In Doc 37 we tried to
 - Show the technical requirements
 - The impact on cleanability
 - Necessary considerations




The target: sensitize and give background for a decision

What role do sensors play?

- Part of the problem
 - hygienic threat, as with product contact
 - Specific installation requirements
 - Some with technology driven shapes
- Part of the solution
 - The signal help to optimize cleaning
 - Safeguarding the CIP process
 - Reporting what was done

Aim and use of the standard

ENGINEERIA SOLUTION OF DESIGNATION OF DESIGNATION

- Jointly decided target:
 - Covering the main applications
 - Showing the major used technologies
 - Showing how the technology
 - Impacts
 - Is impacted by cleaning and process

 Show, which technologies might have stainless steel hygienic process connections, but the sensors are not well cleanable

How grey is your process

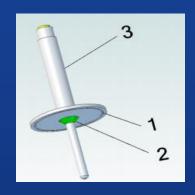
• Black?

• White?

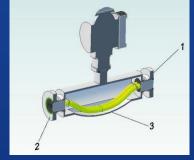
Most processes are grayish

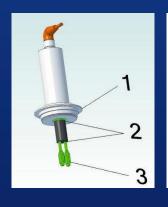
Setup and content

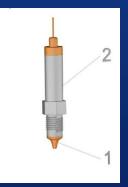

- Objectives and scope, normative references and definitions as for all documents in EHEDG
- General consideration and external parts of process sensors:
 - focus on the generic topics
 - relevant for all sensors and holder
- References
 - Pointing to the main Documents of relevance
- Key Learning Points
 - Short summary

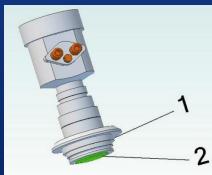

	CHEDG		
Conten	ts	Pag	
Summary		7	
Introducti	on	7	
	jectives and scope		
2 No	2 Normative References		
3 De	3 Definition of Terms		
4 General Considerations and external parts of process sensors			
	eneral		
5 Se	nsors	10	
	nsors for wet applications and slurries		
	mperature		
5.1.1.1	Contact free temperature sensors		
5.1.1.1.1	Laser and Infrared Temperature		
5.1.1.1.2	Clamp on	10	
5.1.1.2	Contact temperature sensors	11	
5.1.1.2.1	Weld in spud / Thermowell	11	
5.1.1.2.2	Direct integration	12	
	w.		
5.1.2.1	Electronically measured	13	
5.1.2.1.1	Magnetic-inductive measurement devices	13	
5.1.2.1.2	Coriolis mass flow measurement		
5.1.2.1.3	Thermal flow measurement		
5.1.2.1.4	Ultrasonic Flow (Clamp on and ingressing)		
5.1.2.1.5	Surface acoustic wave (SAW)		
5.1.2.1.6 5.1.2.1.7	Vortex Flow Sensors Differential Pressure Flow		
5.1.2.1.7 5.1.2.2	Mechanically measured		
5.1.2.2.1	Mechanical flow measurement, here: oval wheel meters		
5.1.2.2.1	Float-type flow meters, variable area flow		
	vel		
5.1.3.1	Limit Switches		
5.1.3.1.1	Vibronic		
5.1.3.1.2	Capacitance		
5.1.3.1.3	Conductivity level switches		
5.1.3.1.4	Microwave level switches		
56.114			

What kind of liquid sensor technologies


- Temperature
- Flow
- Level
- Pressure
- Analytical







Doc 37 in the definition of the grey

- Basis for the own risk assessment
 - Define your Target
 - Use Doc37 Guideline to find the hot spots of attention
 - Cross check if technology can solve the task (involve supplier)
 - Recognize the impact on cleaning
 - Decide what sacrifices are necessary and useful
- Act like as the choice is part of the HACCP concept, even if the application is not critical for consumer safety
- Back up the decision with the expected savings (time, raw material, water, energy, detergents, waste water) and document it

Safety

Quality

Availability

Costs

Document 37 Part 2

- Part one is
 - User focused
 - Shows available technologies
 - Give operative hinds
- Aim of Part 2
 - Generalize the requirements
 - Enable pointed future development
 - Sensitize designer and developer of future sensors
- As generic as possible, as focused as needed

I hope you had a valuable time.

Questions?