

# **DOC 48: Elastomeric Seals**

Hygienic Aspects of Elastomeric Seals in Food Processing and Packaging Components

#### Introduction



- Complex equipment and components are often used in food processing
- Elastomeric seals are used to prevent product contact to assembly features or to seal moving parts
- DOC 48 addresses hygienic aspects of elastomeric seals in food processing and packaging components
- Shall raise awareness of basic design principles
- The Guideline refers mainly to O-Rings the type of seal most commonly used

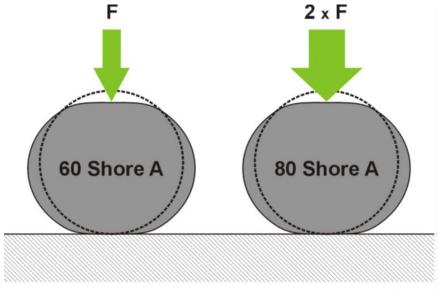
# Basic Design Principles



When designing a seals in its housing you need to:

choose the best suitable elastomer for the seal (dependent on given application, operating conditions and normative regulations)

ensure a surface quality that offers no retention space to product soils and microorganisms


#### Compression of Elastomers



Usually: contact pressure between seal and groove > pressure in the given application

Elastomers are *incompressible* => deformation is possible, reduction of volume not.

Pressure needed to deform a seal depends on its hardness



## Groove size and groove fill

Groove size minimum = volume of the seal

Seal volume increases with increasing temperature and shrinks again with sinking temperature

- Groove size must be
  - big enough to include seal volume plus expected thermal expansion volume and
  - > small enough to ensure sufficient contact pressure

# Alignment of Couplings



- Flow shadows, cleaning and draining problems might be caused by misalignment of a coupling
- Design features like guiding elements can ensure this

- Seal flushness ideally no protrusion and no recess with the bore of the pipe
- > In practice only an approximation to the ideal is possible

#### Behaviour of Elastomers used as Seals



#### Effects of

- Temperature (ageing, thermal expansion, temperature cycling)
- Pressure (seal deformation, internal stress, FEM)

Mechanical stress (degradation of elastomers, cracks)

Media (elastomers, food products, cleaning agents and sterilizing agents should interact as little as possible)

#### Hardware Design



Example for a groove design for reaching an aseptic standard (DIN 11864)

The "elevator effect" and the advantages of double seal design

#### Trouble shooting

# ENGINEER/NO SE DES

#### Overview over

Pictures showing most common seal damages occuring in practice (excessive friction, over-compression, overfilling, explosive decompression, gap extrusion, grease swelling, etc.)

> Failure documentation for finding the root cause

# Handling of Seals



#### Packaging: for protection









## Legislation and Requirements



- Documentation: compliance of material, design and fabrication to the
  - a) food-business operator's specification and
  - b) Framework Regulation EC 1935/2004
- Traceability: Framework Regulation demands traceability one stage backwards and one stage forward for all components including seals
- Marking of seals or the smallest possible unit (smallest bag): => traceability and positive identification of seals after removal

#### General information



> Technical information provided by suppliers

Leading standards and Regulations => Annex A

Normative References for food contact materials => Annex B

#### Thank You



Guideline Document 48 – available soon @ EHEDG